
Fast Matting Using Large Kernel Matting Laplacian Matrices

Kaiming He1

1Department of Information Engineering

The Chinese University of Hong Kong

Jian Sun2

2Microsoft Research Asia

Xiaoou Tang1,3

3Shenzhen Institute of Advanced Technology

Chinese Academy of Sciences

Abstract Image matting is of great importance in both

computer vision and graphics applications. Most exist-

ing state-of-the-art techniques rely on large sparse matri-

ces such as the matting Laplacian [12]. However, solving

these linear systems is often time-consuming, which is un-

favored for the user interaction. In this paper, we propose a

fast method for high quality matting. We first derive an effi-

cient algorithm to solve a large kernel matting Laplacian. A

large kernel propagates information more quickly and may

improve the matte quality. To further reduce running time,

we also use adaptive kernel sizes by a KD-tree trimap seg-

mentation technique. A variety of experiments show that

our algorithm provides high quality results and is 5 to 20

times faster than previous methods.

1. Introduction

Image matting refers to the problem of softly extracting

the foreground object from a single input image. Denot-

ing a pixel’s foreground color, background color, and fore-

ground opacity (alpha matte) as F, B, and � respectively,

the pixel’s color I is a convex combination of F and B:

I = F�+B(1− �). (1)

Image matting has a number of important applications, such

as image/video segmentation, layer extraction, new view

synthesis, interactive image editing, and film making.

Since the problem is highly ill-posed, a trimap (or

strokes) indicating definite foreground, definite back-

ground, and unknown regions is usually given by the user.

To infer the alpha matte in the unknown regions, Bayesian

Matting [4] uses a progressively moving window march-

ing inward from the known regions. In [2], the alpha value

is calculated by the geodesic distance from a pixel to the

known regions. Affinity-matrix-based methods propagate

constraints from the known regions to the unknown regions:

Poisson matting [19] solves a homogenous Laplacian ma-

trix; Random Walk matting [7] defines the affinity matrix

by a Gaussian function; in the closed-form matting [12],

a matting Laplacian matrix is proposed under a color line

assumption. The matting Laplacian can also be combined

(a) (b)

(c) (d)

Figure 1. (a) Image (800×563 pixels). (b) Trimap (180k unknown

pixels). (c) Result of closed-form matting [12]. The running time

is 28 seconds using a coarse-to-fine solver in [12]. (d) Our result.

The running time is 2.5 seconds. Notice the gap between the toys.

with different data weights or priors [24, 14, 15]. New ap-

pearance models [18] and a learning based technique [25]

are proposed to generalize the color line assumption. Cur-

rently, matting-Laplacian-based methods produce the best

quality results [16, 23].

However, efficiency is also very important for image

matting, especially when we are faced with multi-megapixel

images produced by today’s digital cameras. The progres-

sively moving window in Bayesian Matting [4] is computa-

tionally expensive. The geodesic framework [2] presents a

linear time algorithm. But the model itself may not be able

to handel complex cases like hair. Poisson Matting [19]

and Random Walk Matting can be accelerated by a multi-

grid solver or a GPU implementation, but lack satisfac-

tory quality [16]. The methods using the matting Lapla-

cian [12, 24, 14, 15] or other sophisticated matrices [18, 25]

have to solve a large linear system - a very time consum-

ing operation. Soft Scissor [21] locally solves a small lin-

ear system while the user is drawing the trimap. But it is

still slow for mega-pixel images and not applicable for pre-

drawn trimaps. A more efficient method for high quality

matting is still desired.

1



In this paper, we propose a fast algorithm for high quality

image matting using large kernel matting Laplacian matri-

ces. The algorithm is based on an efficient method to solve

the linear system with the large kernel matting Laplacian.

Using a large kernel can accelerate the constraint propaga-

tion, reduce the time of the linear solver for convergence,

and improve the matting quality. To further speed-up the al-

gorithm, we use a KD-tree based technique to decompose

the trimap so that we can assign an adaptive kernel size

to each sub-trimap. Thus, the number of iterations can be

fixed beforehand and the running time of the whole algo-

rithm is only linear to the number of the unknown pixels.

We demonstrate that our algorithm is about 5 to 20 times

faster than previous methods while achieving high quality

(Fig. 1). Our algorithm is also useful for other applications

using the matting Laplacian, like haze removal [9], spatially

variant white balance [10], and intrinsic images [3].

2. Background

The matting Laplacian matrix proposed in [12] is an

affinity matrix specially designed for image matting. The

key assumption of this method is the color line model: the

foreground (or background) colors in a local window lie on

a single line in the RGB color space. It can be proved that

� is a linear transformation of I in the local window:

�i = a
T
Ii + b, ∀i ∈ !, (2)

Here i is a pixel index, Ii and a are 3× 1 vectors, and a and

b are assumed to be constant in the local window !.

Accordingly, a cost function J(�, a, b) can be defined to

encourage the alpha obeying this model:

J(�, a, b) =
∑

k∈I

(
∑

i∈!k

(�i − a
T
k Ii − bk)

2 + "aTk ak), (3)

where !k is the window centered at pixel k, and " is a regu-

larization parameter. By minimizing the cost function w.r.t.

(a, b), a quadratic function of � can be obtained:

J(�) = �TL�. (4)

Here � is denoted as an N×1 vector, where N is the number

of unknowns. And L is called matting Laplacian. It is an

N×N symmetric matrix whose (i, j) element is:

∑

k∣(i,j)∈!k

(�ij−
1

∣!k∣
(1+(Ii−�k)

T(Σk+
"

∣!k∣
U)−1(Ij−�k))),

(5)

where �ij is the Kronecker delta, �k and Σk are the mean

and covariance matrix of the colors in window !k, ∣!k∣ is

the number of pixels in !k, and U is a 3×3 identity matrix.

Combining this cost function with the user-specified

constraints (trimap), the whole cost function is defined as:

E(�) = �TL�+ �(� − �)TD(� − �), (6)

i

k ωi

j ωk

ωi

ωk

r

2r

Figure 2. According to (5), the (i, j) element of L is non-zero only

if (i, j) ∈ !k. If the radius of the window ! is r, the radius of the

kernel centered at i is 2r. The kernel is a rectangle including all

the gray pixels in this figure.

where � is the trimap, D is a diagonal matrix whose ele-

ments are one for constraint pixels and zero otherwise, and

� is a large number. A data term specified by color sam-

pling confidence [24, 14] or a sparsity prior [15] can also

be incorporated. The cost function (6) can be optimized by

solving a sparse linear system:

(L + �D)� = �D�. (7)

The techniques of haze removal [9], spatially variant white

balance [10], and intrinsic images [3] also involve this linear

system.

Given the linear system, we need to use an appropriate

solver to recover �. Non-iterative methods like LU decom-

position are not effective to handle this system in large scale

due to the high memory cost. So iterative methods are usu-

ally applied, like the Jacobi method or Conjugate Gradient

(CG) [17]. The information of the known pixels is propa-

gated into the unknown region by iteratively multiplying the

matrix. However, iterative methods are often time consum-

ing. For example, the time complexity of CG is O(N1.5) for

N unknowns. A medium size image (800 × 600) may take

hundreds or thousands of iterations. Another drawback of

the iterative methods is that the time needed is hard to pre-

dict because the iteration number depends on the number of

unknowns, the image content, and the trimap shape. This is

not favored for interactive image matting.

In [12], a coarse-to-fine scheme is proposed to speed-

up the linear system solver. But the down-sampling pro-

cess may degrades the matte quality, especially for the fore-

ground with very thin structures. Moreover, in the fine res-

olution it also suffers from the drawbacks of the iterative

methods. Locally adapted hierarchical basis precondition-

ing in [20] is not directly applicable because the elements of

the matting Laplacian matrix (5) are not first-order smooth.

3. Large Kernel Matting Laplacian

Existing methods [12, 24, 14, 15] usually use a small

window because the matrix will be less sparse with a larger

window. Conventional wisdoms hold that solving a less



sparse system is even slower. But we point out it is not nec-

essarily true. A less sparse system needs fewer iterations

to converge; the only bottle neck is the increased computa-

tional burden in each iteration. In this section, we propose

an algorithm to greatly reduce the time needed for each iter-

ation, so the solver is in fact faster if we use a larger window.

The kernel size of a matting Laplacian is defined as the

the number of the non-zero elements in a row of L. De-

note the window radius of ! in (5) by r. The kernel size is

(4r + 1)2 (see Fig. 2). Existing methods mainly use r = 1
because L will become less sparse when r is larger. Both

the memory and the time needed to solve the linear system

will increase tremendously.

Take CG for example. The solver iteratively multiplies

the conjugate vector by the Laplacian matrix (please see

[17] for detailed description of CG). In each iteration, the

matrix product Lp dominates the computation cost . Here p
is the conjugate vector of the previous iteration. In the view

of signal processing, the matrix product Lp is the response

of a spatially variant filter L on p, whose itℎ element is:

(Lp)i =
∑

j

Lijpj . (8)

Computing Lp using (5) and (8) involves spatially vari-

ant convolution, whose time and memory complexity is

O(Nr2). This is not affordable when r gets larger.

We notice that in each iteration, a pixel can influence

another pixel that is 2r away. So the information is prop-

agated by 2r pixels. The CG solver will converge in fewer

iterations if the kernel size is larger. This motivates us to en-

vision that the use of a large kernel may reduce the solver’s

running time, if we can significantly increase the speed of

the convolution in (8).

Toward this goal, we present an O(N) time (independent

of r) algorithm to compute the product Lp in each iteration.

Instead of computing L’s elements and the convolution ex-

plicitly, we calculate the product Lp as a whole by the fol-

lowing algorithm:

Algorithm for calculating Lp
Given a conjugate vector p, Lp can be calculated through

the following three steps:

a
∗
k = Δ−1

k (
1

∣!∣

∑

i∈!k

Iipi − �kp̄k), (9)

b∗k = p̄k − a
∗
k
T�k, (10)

(Lp)i ≡ qi = ∣!∣pi − ((
∑

k∈!i

a
∗
k)

T
Ii + (

∑

k∈!i

b∗k)), (11)

where a∗k is a 3×1 vector for each pixel k, p̄k is the mean of

p in !k, Δk = Σk +
"

∣!k∣
U, and we denote (Lp)i as qi.

Theorem: The q given by the above algorithm is identical

to the Lp calculated by (5) and (8).

Proof : Written in matrix notation, from (9) there is an affine

transform:

a
∗ = Ap, (12)

where A is a coefficient matrix only dependent on I. If

we put (9) into (10), we can see that b∗ is also p’s affine

transform: b∗ = Bp. Similarly, q is p’s affine transform:

q = Qp.

Consequently, in order to show q = Lp, we only need to

prove ∂qi/∂pj = L(i, j). Putting (10) into (11) and elimi-

nating b, we obtain:

∂qi
∂pj

= ∣!∣�ij −
∑

k∈!i

(
∂p̄k
∂pj

+
∂a∗k

T

∂pj
(Ii − �k)) (13)

Here, we have:

∂p̄k
∂pj

=
1

∣!∣

∑

n∈!k

∂pn
∂pj

=
1

∣!∣
�j∈!k

=
1

∣!∣
�k∈!j

(14)

where �j∈!k
is 1 if j ∈ !k, and is 0 otherwise. According

to (9) we also have:

∂ak
∂pj

= Δ−1
k (

1

∣!∣

∑

i∈!k

∂pi
∂pj

Ii −
∂p̄k
∂pj

�k)

= Δ−1
k (

1

∣!∣
Ij −

1

∣!∣
�k)�k∈!j

(15)

Putting (14) and (15) into (13), we obtain:

∂qi
∂pj

= ∣!∣�ij−
1

∣!∣

∑

k∈!i,k∈!j

(1+(Ij−�k)
TΔ−1

k (Ii−�k))

This is exactly L(i, j) in (5). ■

The proposed algorithm also has intuitive interpreta-

tions: Equations (9) and (10) indeed are linear regression

solutions and the regression model is pi ≈ a
∗
k
T
Ii+b∗k, ∀i ∈

!k. Further, (11) can be rewritten as:

(Lp)i =
∑

k∈!i

(pi − (a∗k
T
Ii + b∗k)). (16)

For any pixel Ii, the term (pi − (a∗k
T
Ii + b∗k)) is the error

between pi and its linear prediction. As Ii is involved in all

the regression processes satisfying k ∈ !i, equation (16) is

the sum of errors in all windows around i.
All the summations in (9) and (11) can be very efficiently

computed using the integral image technique [6]. Using the

integral image, the sum of the any window can be obtained

in constant time (four operations). Therefore, the time com-

plexity for computing Lp in each iteration is O(N’)≈O(N),

where N’ is the size of the bounding box of the unknown

region. Note that the time complexity is independent of the

kernel size.



(a) (b) (c) (d)

-6

-5

-4

-3

-2

-1

0

1

0 100 200 300 400 500 600

r=1

r=5

r=10

r=20

iteration

log10err

Figure 3. (a) Cropped image (98 × 130). (b) Trimap. (c) r=1,

iteration 519. (d) r=20, iteration 44. On the bottom are the curves

of error vs. iteration numbers.

(a) (b) (c) (d)

Figure 4. (a) Cropped image (231× 231). (b) Trimap. (c) r=1. (d)

r=20.

Discussion on Kernel Size

Using the above algorithm, the running time of the CG

solver can be greatly reduced if we use a large kernel - the

solver converges in fewer iterations. In Fig. 3, we experi-

ment several different kernel sizes on the same image. The

solver converges much faster in the large kernel case. Our

algorithm’s running time is 1.07s (r=1, converges in 519

iterations) and 0.090s (r=20, converges in 44 iterations),

while the running time of brute force CG using (5) and (8)

is 0.95s (r=1) and 22s (r=20). In this example, the resulting

mattes are almost visually identical (Fig. 3(c)(d)).

A large kernel may improve the quality because a

large window may cover disconnected regions of the fore-

ground/background. This property is particularly favored

when the foreground object has holes. In Fig. 4(c), r = 1 is

too small to cover the known background and the holes. We

can obtain a better matte if we use a larger window size r =

20 (Fig. 4(d)).

Our large kernel method is typically appropriate for high

resolution images. In Fig. 5(c), a small window is not suffi-

cient to describe the color lines and results in the loss of the

fine structures. However, a large window collects enough

color samples and gives a better result (Fig. 5(d)). A large

window also covers more known pixels near the boundary

of unknowns and provides more stable constraints.

The drawback of a large kernel is that when the fore-

ground/background is complicated, a larger window leads

(a) (b) (c) (d)

Figure 5. (a) A cropped image (636 × 636) from a 2080 × 2600
image. (b) Trimap. (c) r=1. (d) r=60. We recommend viewing the

electronic version of this paper for the fine structures.

to a higher probability of breaking the color line assump-

tion. In the zoomed-in patches of Fig. 6, a large window

covers more than one color clusters of the background, so

the colors do not lie in the same line. Consequently, the

matte is not as accurate as using a small window.

We observe that in practice, the user draws a wide band

of unknowns near a fuzzy object or an object with holes, as

it is difficult to provide a precise boundary; the band of un-

knowns near a solid boundary is relatively narrow. We can

see this fact in Fig. 1(b) and Fig. 6(b). Besides, a high reso-

lution image may also result in a wider band of unknowns.

So we prefer to use a large kernel to efficiently propagate

constraints in a wide band. For a narrow band, a small ker-

nel is favored to avoid breaking the color line assumption.

To achieve this goal, in the next section, we adaptively set

the kernel size based on a trimap segmentation technique.

4. KD-tree Based Trimap Segmentation

In this section, we propose a trimap segmentation

method to further improve both the quality and efficiency.

This allows us to assign different window sizes to different

regions.

Given a trimap, we first calculate the unknown region’s

barycenter (xc, yc), x variance �2
x = 1

n

∑
U(xc − x)2 and

y variance �2
y , where U is the set of unknown pixels, and

n is the size of U. Then we use a line that passes through

(xc, yc) to divide the map into two regions. This line is

vertical to the axis (x or y) with a larger variance. A trimap

is recursively divided and a 2D KD-tree is built accordingly.

Next we discuss the conditions when the recursive pro-

cess stops. We observe that if a cropped image covers

enough foreground and background constraints, a reason-

ably good matte can be obtained by only considering this

cropped image independently, as demonstrated in Fig. 3 and

Fig. 4. Therefore, we hope the segments are small enough,

while as many of them as possible have both foreground (F)

and background (B) constraints. So the recursive division

stops until one of these conditions is satisfied: (a) the seg-

ment only has F and U; (b) the segment only has B and U;

(c) if we divide the segment, one of its children only has F

and U, and the other only has B and U; (d) The segment’s

min(width, height) is smaller than a threshold (32 in our ex-

periments). Fig. 7 gives an example of a segmented trimap.

Notice that the band width of the unknowns in each segment



(a) (c) (d)(b)

Figure 6. (a) A 640 × 600 image. (b) Trimap. (c) r=1. (d) r=10. We recommend viewing the matte in the electronic version of this paper.

Figure 7. Trimap segmentation.

r=17, iteration 1 r=17, iteration 3 r=17, iteration 10

r=10, iteration 1 r=10, iteration 3 r=10, iteration 10

Figure 8. Propagation and window sizes. The band width wb ≈ 50
in the first row, and wb ≈ 30 in the second row,. The window

radius r = wb/3.

is nearly uniform.

Once the trimap is segmented, we can solve the linear

system in each segment. The integral image is only calcu-

lated in the bounding box of the unknowns in each segment.

We first solve the segments that satisfy condition (c) or (d),

as they directly contain both F and B constraints. Then,

other segments (that only have F and U, or B and U) are

solved in inverse Breadth-First Search order, i.e., the deeper

leaves in the KD-trees have a higher priority. As they do

not contain F or B constraint, we use the solved matte of the

neighboring segment as boundary conditions. The inverse

Breadth-First Search order insures that at least one of their

neighbors has been solved before.

More importantly, we adapt the kernel size to the band

width of the unknowns. For each segment, let (w, h) be

the width and height of U’s bounding box. We approximate

the width of the band by wb=n/max(w,h). We set the win-

dow radius r = wb/�, where � is a factor. Intuitively, the

propagation will influence the other side of the band in �/2

iterations (notice that the kernel radius is 2r). Therefore, the

number of iterations needed for convergence is in the order

of �, and can be fixed beforehand. In Fig. 8, we show that

(c-2)

(a-2)

(b-1) (b-2)(b)

(c-1)

(d-1) (d-2)

(a) (a-1)

(c)

(d)

(a-1)

(a-2)

Figure 9. Local-global-local Scheme. (a) Segmented trimap of

Fig. 1. (b) Local step 1. (c) Global step. (d) Local step 2. Please

refer to the text for explanation. We recommend to see the elec-

tronic version of these images.

the propagation speed is adaptive to the band width. The

same number of iterations provide high quality mattes for

two bands of different width.

A Local-Global-Local Scheme

To prevent the result being too locally determined, we

propose a local-global-local scheme. Given the trimap seg-

mentation, we first solve the matte for each segment. Here

we let �=3. This step propagates information fast. We em-

pirically fix the iteration number to 10 which is sufficient to

get a good initial matte for the next step (Fig. 9(b)). Notice-

able seams may exist on segment boundaries (Fig. 9(b-1)).

Using the above obtained solution as initial guess, we

optimize the whole linear system globally. In this step, we

set the window radius r to be min(w, h)/50 where w and h



are the image’s width and height. The iteration number is

fixed on 5. This global step removes the seams (Fig. 9(c-

1)). But as the kernel size may be too large for some local

regions, there are artifacts due to the failure of the color line

assumption (Fig. 9(c-2)).

In the final step, we refine this solution locally using the

trimap segmentation again. Here we let � = 15 and run 20

iterations. In experiments we found that more iterations im-

prove the result very little. The window size is much smaller

than the first local step because we want to maintain the

color line model. This suppresses the artifacts due to the

large window size used in previous two steps (Fig. 9(d-2)).

Time Complexity

Denote N’ as the total area of all the bounding boxes

of the unknowns in all segments. The time complexity of

the local steps is O(N’), since the time for calculating Lp in

each iteration is O(N’) and the iteration number is fixed. For

the same reason, the time complexity of the global step is

O(M), where M is the size of the bounding box of the whole

unknown region. In experiment, we find that the time for the

global step is much less than that of the local steps due to

fewer iterations. So the total time complexity is O(N’). As

N’ is slightly larger than the number of unknowns N, the

running time is almost linear to N. Besides, once the trimap

is segmented, the time can be predicted before running the

solver.

5. Results

We compare our algorithm with the closed-form matting

in [12] (i.e., r=1). For closed-form matting, we calculate

the matting Laplacian using (5) and then solve the linear

system using two different methods: brute force CG (simply

denoted as CG below), and the coarse-to-fine (C-F) scheme

described in [12]. For CG, we fix the convergence tolerance

(10−5). For C-F, we run three levels and in each level we

solve the system using CG. All algorithms are implemented

using C++ on a laptop with an Intel Core Duo 2.0GHz CPU

and 4G memory.

Table 1 shows the running time. Our algorithm is about 5

to 20 times faster than CG or C-F for medium and large im-

ages. We also study the average running time per unknown

pixel (� = t/N). Our algorithm gives similar � (about 0.02)

for different images. The small variation of our � is mainly

because the time is linear to N’ but not N. On the contrary,

� varies severely for the other two algorithms, because it is

influenced by the number of unknowns, image content and

the shape of the trimap. Their � is also much larger for

mega-pixel images (Fig. 13).

To further study the effect of image sizes on the running

time, we down-sample a 5.4M-pixel image (2080 × 2600,

the first row of Fig. 13) and its trimap to ten different scales

and run all algorithms. The curves are shown in Fig. 10.

35.5

91.8

163.7

248

345

449

560

665

790

902

18
44

74
105

144

185

225

265

312

352

2.5 
5.0 7.8 

10.9 13.3 16.4 19.0 22.6 25.4 28.2 

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6

CG

C-F

Ours

time / s

image size / mega-pixel

Figure 10. Image size vs. running time.

(a) (b) (c)

Figure 14. Mattes from strokes. (a) Images and strokes. (b) Results

of the closed-form matting. (c) Our results. The images and stroke

maps are from [12].

The time of our algorithm increases linearly with the image

size, while the time of CG and C-F increases super-linearly.

Next, we compare the matte qualities. For medium

images, the results are visually similar for fuzzy objects

(Fig. 11). However, our method is better at handling holes,

like Fig. 12 and the gap between the toys in Fig. 1. Fur-

ther, in Fig. 13 we show that our large kernel method greatly

improves the quality for high resolution images, as a large

kernel collects enough samples to describe the color lines.

In Fig. 14, we show the results of stroke-based con-

straints. The resulting mattes are visually very similar. Note

that the stroke-based framework has been proposed to re-

duce the user’s labor. But strokes lead to large areas of un-

knowns, which increase the running time and often make

the whole interaction process even longer. Our method pro-

vides comparable results in very short time, so facilitates

the feedback from the user.

Table 2 shows the average rank of mean square error

(MSE) on the benchmark data [1]. The MSE rank of our

algorithm is comparable with the closed-from matting [12]

and Robust Matting [24]. Note that [24, 14, 15] combine

the matting Laplacian with data terms, while our method

and [12] do not. We believe that our algorithm can also

greatly reduce their running time and further advance the

state-of-the-art in both efficiency and quality.



image time average time per k unknowns (� )

size unknowns CG C-F ours CG C-F ours

Fig 1 800× 563 180k 49s (20) 29s (11) 2.5s 0.27 0.16 0.014

Fig 11 720× 515 48k 7.7s (10) 7.1s (9) 0.8s 0.16 0.15 0.017

800× 575 49k 9.4s (10) 6.8s (8) 0.9s 0.19 0.14 0.018

Fig 12 800× 595 143k 44s (14) 28s (9) 3.1s 0.31 0.20 0.022

800× 524 57k 14s (11) 5.9s (5) 1.2s 0.25 0.10 0.023

Fig 13 2080× 2600 1280k 902s (32) 352s (12) 28s 0.70 0.28 0.022

3040× 2350 766k 440s (28) 256s (16) 15.7s 0.57 0.33 0.020

2890× 2600 857k 464s (31) 206s (14) 14.9s 0.54 0.24 0.017

Fig 14 348× 261 60k 12.6s (16) 2.4s (3) 0.8s 0.21 0.04 0.013

342× 329 80k 19s (19) 4.7s (5) 1s 0.24 0.06 0.013

Fig 15 800× 602 67k 12.4s (11) 11.6s (11) 1.1s 0.19 0.17 0.016

Fig 16 278× 333 86k 36s (51) 5.7s (8) 0.7s 0.42 0.07 0.008

Table 1. Image sizes and running time. The numbers in the brackets are the ratios to our algorithm’s running time. Solving the closed-form

matting using brute force Conjugate Gradient (CG) is very slow when the number of unknowns gets larger. The coarse-to-fine scheme

(C-F) in [12] accelerates the stroke-based examples (Fig. 14 & 16), but still takes hundreds of seconds for high-resolution image (Fig. 13).

Our method is about 5 to 20 times faster. Even mega-pixel images with mega unknowns (Fig. 13) only takes 15 to 30 seconds.

CG oursC-F ground truthimage trimap CG oursC-F

Figure 11. Medium images of fuzzy objects. The images and trimaps are from [1] and [24].

input trimap CG oursC-F CG oursC-F

Figure 12. Medium images of foreground objects with holes. The images and trimaps are from [1].

CG oursC-F ground truthimage trimap CG C-F ours

Figure 13. High resolution images. The images and trimaps are from [1]. We recommend to see the electronic version of this paper.



Improved color [14] 2 Random walk [7] 6.8

Our method 3.2 Geodesic [2] 7.5

Closed-form [12] 3.3 Bayesian [4] 8.8

Robust [24] 3.7 Easy matting [8] 9

High-res [15] 4.4 Poisson [19] 10.9

Iterative BP [22] 6.6

Table 2. Average rank of mean square error (MSE) on a data set

from [1]. Please visit [1] for a comprehensive comparison.

input closed-form ours

input trimap closed-form ours

Figure 15. Failure of the color line assumption.

strokes closed-form ours additional strokes ours

Figure 16. Failure case where the constraints are too sparse.

Like the closed-form matting, our method may fail when

the color line assumption is invalid, e.g., when the fore-

ground/background colors are complicated (Fig. 15). More-

over, our method may give poorer results when the band of

unknowns is too wide, because the large kernel increases the

probability of breaking the color line assumption (Fig. 16).

However, as our method runs quickly, it is convenient for

the user to improve the result by refining the trimap.

6. Conclusion and Discussion

In this paper, we propose a fast and effective algorithm

for image matting. Our novel insight is that solving a large

kernel matrix is not necessarily slow. It indeed takes fewer

iterations to converge; we only need to focus on reducing

the time in each iteration. Besides, a large kernel may

also improve quality. This will encourage us to restudy a

great category of matrices, like the homogenous Laplacian

in Poisson image editing [13], Gaussian affinity Laplacian

in colorization [11], or other edge-preserving matrices [5].

Generalizing their definitions to larger kernels will lead to

new research topics.

References

[1] http://www.alphamatting.com.

[2] X. Bai and G. Sapiro. A geodesic framework for fast in-

teractive image and video segmentation and matting. ICCV,

2007.

[3] A. Bousseau, S. Paris, and F. Durand. User-assisted intrinsic

images. SIGGRAPH Asia, 2009.

[4] Y. Chuang, B. Curless, D. Salesin, and R. Szeliski. A

bayesian approach to digital matting. CVPR, 2001.

[5] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-

preserving decompositions for multi-scale tone and detail

manipulation. SIGGRAPH, 2008.

[6] C. Franklin. Summed-area tables for texture mapping. SIG-

GRAPH, 1984.

[7] L. Grady, T. Schiwietz, and S. Aharon. Random walks for

interactive alpha-matting. VIIP, 2005.

[8] Y. Guan, W. Cheny, X. Liang, Z. Ding, and Q. Peng. Easy

matting: A stroke based approach for continuous image mat-

ting. Eurographics, 2006.

[9] K. He, J. Sun, and X. Tang. Single image haze removal using

dark channel prior. CVPR, 2009.

[10] E. Hsu, T. Mertens, S. Paris, S. Avidan, and F. Durand. Light

mixture estimation for spatially varying white balance. SIG-

GRAPH, 2008.

[11] A. Levin, D. Lischinski, and Y. Weiss. Colorization using

optimization. SIGGRAPH, 2004.

[12] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solu-

tion to natural image matting. CVPR, 2006.

[13] P. Perez, M. Gangnet, and A. Blake. Poisson image editing.

SIGGRAPH, 2003.

[14] C. Rhemann, C. Rother, and M. Gelautz. Improving color

modeling for alpha matting. BMVC, 2008.

[15] C. Rhemann, C. Rother, A. Rav-Acha, M. Gelautz, and

T. Sharp. High resolution matting via interactive trimap seg-

mentation. CVPR, 2008.

[16] C. Rhemann, C. Rother, J. Wang, M. Gelautz, P. Kohli, and

P. Rott. A perceptually motivated online benchmark for im-

age matting. CVPR, 2009.

[17] Y. Saad. Iterative methods for sparse linear systems, page

178. SIAM, 2003.

[18] D. Singaraju, C. Rother, and C. Rhemann. New appearance

models for natural image matting. CVPR, 2009.

[19] J. Sun, J. Jia, C. Tang, and H. Shum. Poisson matting. SIG-

GRAPH, 2004.

[20] R. Szeliski. Locally adapted hierarchical basis precondition-

ing. SIGGRAPH, 2006.

[21] J. Wang, M. Agrawala, and M. Cohen. Soft scissors: An in-

teractive tool for realtime high quality matting. SIGGRAPH,

2007.

[22] J. Wang and M. Cohen. An iterative optimization approach

for unified image segmentation and matting. ICCV, 2005.

[23] J. Wang and M. Cohen. Image and video matting: A survey.

Foundations and Trends in Computer Graphics and Vision,

2007.

[24] J. Wang and M. Cohen. Optimized color sampling for robust

matting. CVPR, 2007.

[25] Y. Zheng and C. Kambhamettu. Learning based digital mat-

ting. ICCV, 2009.


